Primitive Types: Post- Activity		
You can assign a value to a variable in one of several ways including:
· Type a literal value after the equals sing (x = 12, isGood= true, etc.)
· Assign the value of one variable to another (x = y)
· Use an expression combining the two (x = y + 43)
In the examples below, the literal values are in bold italics. Next to each example, write a sentence describing what each line of code means.
	int size = 32;

	Declares an int named size, assigns it a value 32

	char initial = “j”;

	

	double d = 456.709;

	

	boolean isCrazy;

	

	isCrazy = true;

	

	int y = x + 456;

	

From the following list, circle the statements that would be legal if these lines were in a single method:
1. int x = 34.5;
2. boolean boo = x;
3. int g = 17;
4. int y = g;
5. y= y + 10;
6. short s;
7. s = y;
8. byte b = 3;
9. byte v = b;
10. short n = 12;
11. v = n;
12. byte k = 128;

In the computer activity, you saw that you can’t put a large value into a “small cup.” For example, you can’t pour an int-full of stuff into a byte-sized container, as follows:
int x = 24;
byte b = x;
//won’t work!!
Why doesn’t it work, you ask? After all, the value of x is 24, and 24 is definitely small enough to fit into a byte. You know that, and I know that, but all the compiler cares about is that you’re trying to put a big thing into a small thing and there is a possibility of spilling. Don’t expect the compiler to know what the value of x is, even if you happen to see it literally in your code.

	Primitive Types

	Type
	Bit Depth
	Value Range

	boolean and char

	boolean
	(JVM-specific)
	true or false

	char
	16 bits
	0 to 65535

	numeric (all are assigned)

	integer

	byte
	8 bits
	-128 to 127

	short
	16 bits
	-32768 to 32767

	int
	32 bits
	-2147483648 to 2147483647

	long
	64 bits
	-huge to huge

	floating point

	float
	32 bits
	varies

	double
	64 bits
	varies

We’ve talked about the sizes of various primitives and how you can’t shove a big thing into a small thing:
long y = 42;
int x = y; //won’t compile

A long is bigger than an int and the compiler can’t be sure what value has been assigned to the long. To force the compiler to jam the value of a bigger primitive variable into a smaller one, you can use the cast operator. It looks like this:

long y = 42; //so far so good
int x = (int) y; // x = 42 cool!

Putting in the cast tells the computer to take the value of y, chop it down to int size, and set x equal to whatever is left. If the value of y was bigger than the maximum value of x, then what left will be a weird (but calculable*) number:
long y = 40002;
 //40002 exceeds the 16-bit limit of a short

short x = (short) y; //x now equals -25534!

Still, the point is that the compiler lets you do it. And let’s say you have a floating point number , and you just want to get at the whole number (int) part of it.

float f = 3.14f;
int x = (int) f; // x will equal 3

*It involve sign bits, binary, two’s complement and other geekery.

*Adapted from Head First Java by Sierra and Bates

